
get_options(component)
get_price(component, option)

<<Perl Module>>
BYOData

package BYOData;

%config = (
 cpu_model => {
 ’333 MHZ Celeron’ => 39,
 ’400 MHZ Celeron’ => 43,
 ’466 MHZ Celeron’ => 54,
 },
 disk_size => {
 ’6 GB’ => 60,
 ’8.4 GB’ => 80,
 ’10 GB’ => 99,
 },
 ram_size => {
 ’32 MB’ => 50,
 ’64 MB’ => 100,
 ’128 MB’ => 200,
 },
 cdrom_model => {
 ’24x’ => 60,
 ’44x’ => 70,
 ’12x CDRW’ => 129,
 },
 keyboard => 12,
 mouse => 5,
);

Return a list of options for
a given component.
#
sub get_options {
 my $component = shift;
 return sort keys %{ $config{$component} };
}

Return the price of an option.
#
sub get_price {
 my $component = shift;
 my $option = shift;
 return $config{$component}->{$option};
}
1;

<<Select>> cpu_model
<<Select>> disk_size
<<Select>> ram_size
<<Select>> cdrom_model
<<Checkbox>> include_keyboard
<<Checkbox>> include_mouse
<<Submit>> show_price

make_popup(label, item)

<<Form>>
BuildYourOwn

1-A

1-A

get_options(choice)
get_price(choice, option)

<<Perl Module>>
ShoeData

<<Option>> size
<<Option>> color
<<Option>> material
<<Option>> shipping_option
<<Checkbox>> is_gift
<<TextField>> gift_message
<<Submit>> show_price

make_popup(label, item)

<<Form>>
CustomShoe

Exercise. Implement this in the language of your choice. Feel free
to make up your own values for the options.

#!/usr/bin/perl

use BYOData;
use CGI qw(:standard);

Headers and headings.
print header();
print start_html("System Configurator");
print "<H1>System Configurator</H1>";

Display the form.
print start_form(-action => ’CalcPrice.cgi’);

Create menus.
make_popup(’CPU:’, ’cpu_model’);
make_popup(’Disk:’, ’disk_size’);
make_popup(’RAM:’, ’ram_size’);
make_popup(’CD-ROM:’, ’cdrom_model’);

Display the keyboard and mouse checkboxes.
print checkbox(-name => ’keyboard’,
 -label => ’Include Keyboard?’);
print "<P>\n";
print checkbox(-name => ’mouse’,
 -label => ’Include Mouse?’);
print "<P>\n";
Wrap up the form and HTML doc.
print submit("Calculate Price");
print end_form();
print end_html();

Creates a popup menu.
sub make_popup {

 my $label = shift; # The label.
 my $item = shift; # The component name.

 my @values = BYOData::get_options($item);
 my $menu = popup_menu(-name => $item,
 -values => \@values);

 print "$label $menu
\n";
}

1-B

1-B

<<FrameSet>>
index.html

<<HTML Page>>
banner.html

<<HTML Page>>
menu.html

<<HTML Page>>
specials.html

<<Image>>
logo.png

<
H
T
M
L
>

<
H
E
A
D
>

<
T
I
T
L
E
>
B
r
i
a
n
’
s

C
o
o
k
i
e

C
o
m
p
a
n
y
<
/
T
I
T
L
E
>

<
/
H
E
A
D
>

 <
B
O
D
Y
>

 <
C
E
N
T
E
R
>

<
I
M
G

S
R
C
=
"
l
o
g
o
.
g
i
f
"

A
L
T
=
"
C
o
m
p
a
n
y

L
o
g
o
"
>
<
B
R
>

K
i
n
g
s
t
o
n
,

R
I

-

<
I
>
S
i
n
c
e

2
0
0
0
<
/
I
>

<
/
C
E
N
T
E
R
>

 <
/
B
O
D
Y
>

<
/
H
T
M
L
>

<
H
T
M
L
>

<
H
E
A
D
>

<
T
I
T
L
E
>
C
o
o
k
i
e

M
e
n
u
<
/
T
I
T
L
E
>

<
/
H
E
A
D
>

<
B
O
D
Y
>

 <
H
2
>
O
u
r

M
e
n
u
<
/
H
2
>

 H
i
g
h

F
a
t

C
o
o
k
i
e
s

<
U
L
>

<
L
I
>
M
a
c
a
d
a
m
i
a

<
L
I
>
D
o
u
b
l
e

C
h
o
c
o
l
a
t
e

C
h
i
p

<
L
I
>
W
h
i
t
e

C
h
o
c
o
l
a
t
e

C
h
i
p

<
L
I
>
B
u
t
t
e
r

a
n
d

L
a
r
d

C
h
i
p

<
L
I
>
C
r
a
c
k
l
i
n
g
s

<
/
U
L
>

 L
o
w

F
a
t

C
o
o
k
i
e
s

<
U
L
>

<
L
I
>
C
a
r
o
b

C
h
i
p

<
L
I
>
S
o
l
i
d

S
u
g
a
r

<
L
I
>
W
o
o
d

C
h
i
p

<
L
I
>
S
e
a
w
e
e
d

<
/
U
L
>

 <
/
B
O
D
Y
>

<
/
H
T
M
L
>

<
H
T
M
L
>

 <
H
E
A
D
>

<
T
I
T
L
E
>
B
r
i
a
n
’
s

C
o
o
k
i
e

S
h
o
p
<
/
T
I
T
L
E
>

<
/
H
E
A
D
>

 <
F
R
A
M
E
S
E
T

R
O
W
S
=
"
9
0
,
*
"
>

<
F
R
A
M
E

S
R
C
=
"
b
a
n
n
e
r
.
h
t
m
l
"
>

<
F
R
A
M
E
S
E
T

C
O
L
S
=
"
2
4
0
,
*
"
>

<
F
R
A
M
E

S
R
C
=
"
m
e
n
u
.
h
t
m
l
"
>

<
F
R
A
M
E

S
R
C
=
"
s
p
e
c
i
a
l
s
.
h
t
m
l
"
>

<
/
F
R
A
M
E
S
E
T
>

 <
/
F
R
A
M
E
S
E
T
>

 <
N
O
F
R
A
M
E
S
>

Y
o
u

m
a
y

b
e

u
s
i
n
g

a

b
r
o
w
s
e
r

t
h
a
t

d
o
e
s

n
o
t

s
u
p
p
o
r
t

f
r
a
m
e
s
.
<
P
>

<
A

H
R
E
F
=
"
m
e
n
u
.
h
t
m
l
"
>
S
e
e

o
u
r

m
e
n
u

o
f

c
o
o
k
i
e
s
.
<
/
A
>
<
B
R
>

<
A

H
R
E
F
=
"
s
p
e
c
i
a
l
s
.
h
t
m
l
"
>
S
e
e

o
u
r

c
u
r
r
e
n
t

s
p
e
c
i
a
l
s
.
<
/
A
>
<
B
R
>

 <
/
N
O
F
R
A
M
E
S
>

 <
/
H
T
M
L
>

<
H
T
M
L
>

<
H
E
A
D
>

<
T
I
T
L
E
>
S
p
e
c
i
a
l
s
<
/
T
I
T
L
E
>

<
/
H
E
A
D
>

<
B
O
D
Y
>

 <
H
2
>
T
h
i
s

W
e
e
k
’
s

S
p
e
c
i
a
l
s
<
/
H
2
>

 <
H
3
>
T
o
o

G
r
o
s
s
!
!
!
<
/
H
3
>

T
h
a
t
’
s

r
i
g
h
t

-

2
8
8

(
T
w
o

G
r
o
s
s
)

o
f

a
s
s
o
r
t
e
d

c
o
o
k
i
e
s
,

d
e
l
i
v
e
r
e
d

t
o

s
o
m
e

u
n
s
u
s
p
e
c
t
i
n
g

s
o
u
l
’
s

d
o
o
r
s
t
e
p
!
<
P
>

<
I
>
$

1
9
8
.
8
9

d
e
l
i
v
e
r
e
d
<
/
I
>

 <
H
3
>
A
n
t
i
d
e
p
r
e
s
s
a
n
t
<
/
H
3
>

T
w
o

d
o
z
e
n

a
s
s
o
r
t
e
d

c
o
o
k
i
e
s
,

w
i
t
h

e
v
e
r
y

c
o
o
k
i
e

g
u
a
r
a
n
t
e
e
d

t
o

h
a
v
e

a

d
o
s
e

o
f

l
i
f
e
-
p
r
e
s
e
r
v
i
n
g

c
h
o
c
o
l
a
t
e
!
<
P
>

<
I
>
$

2
4
.
9
9

d
e
l
i
v
e
r
e
d
<
/
I
>

 <
/
B
O
D
Y
>

<
/
H
T
M
L
>

Exercise. Here is a frameset that describes the home page of an
on-line news site, Little Rest News. Develop the HTML pages
that make up this frameset.

<<FrameSet>>
index.html

<<HTML Page>>
banner.html

<<HTML Page>>
headlines.html

<<HTML Page>>
topstories.html

Mayor declares Tuesday to be free doughnut day.

Student uprising leads to frenzied spending spree.

Mayor concedes to health advocates, explains he meant
doughnut-free day.

Main Street closed for paving project.

Pottery Shack in mortal feud with Pottery Kiosk.

Doughnuts in the air!

Short order cooks in short supply.

Some possible headlines:

1-C

1-C

TextField tf_investment
Choice c_rate
TextField tf_years
Button calculate
TextField tf_result

calc_value()

<<Applet>>
Calc.java<<HTML Page>>

calc.html

TextField tf_investment
Choice c_rate
TextField tf_years
Button calculate
TextField tf_result

calc_value()
calc_doubling_time()

<<Applet>>
Calc.java<<HTML Page>>

calc.html

Exercise. Add a feature to the applet that calculates the doubling
time of the investment.

The formula to calculate the doubling time (in years) is:

 ln(2) / ln(1 + interest rate)

Here is an implementation in Java:

 double time_to_double = Math.log(2) / Math.log(1 + rate);

Check your work by feeding the projected doubling time into the
years field of the applet.

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
public class Calc extends Applet {

 TextField tf_investment, tf_years, tf_result;
 Choice c_rate;
 public void init() {

 setLayout(new GridLayout(4, 2));

 add(new Label("Initial Investment"));
 add(tf_investment = new TextField(20));

 add(new Label("Interest Rate"));
 add(c_rate = new Choice());
 c_rate.add("5.00"); c_rate.add("5.25"); c_rate.add("5.75");

 add(new Label("Years"));
 add(tf_years = new TextField(20));

 Button calculate = new Button("Calculate Future Value:");
 add(calculate);
 calculate.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 calc_value();
 }
 });

 // Result field.
 add(tf_result = new TextField(20));
 }

 // Future value formula:
 // FV = PV * [(1 + rate) ** years]
 void calc_value() {
 try {
 long pv = Long.parseLong(tf_investment.getText());
 long years = Long.parseLong(tf_years.getText());
 String str_rate = c_rate.getSelectedItem();
 float rate = Float.valueOf(str_rate).floatValue() / 100;
 // Get the future value and update the result.
 double fv = pv * Math.pow(1 + rate, years);
 tf_result.setText(String.valueOf(fv));
 } catch (NumberFormatException e) {
 System.err.println(e.getMessage());
 }
 }
}

<HTML>

 <HEAD>
 <TITLE>Future Value Calculator</TITLE>
 </HEAD>

 <BODY>
 <h1>Future Value Calculator</h1>
 <hr>
 <applet codebase="." code="Calc.class" width=300 height=100>
 </applet>
 </BODY>

</HTML>

Proxy

Assignment: Find three collaborations that implement Proxy

Problem: Suppose we need to represent a large number of complex
objects, but only a handful of them actually get used. However,
we don’t know which ones will get used until run-time.

How can we defer the cost of creating an object until it gets used?

<<Applet>>
SendMessage

browseUsers()
sendMessage(User)

Solution: Create a proxy object that stands in for the real object until it is
needed. The proxy may be a subclass of the target, and it also
may contain an instance of the target.

Source: Design Patterns, Elements of Reusable Object-Oriented Software. Gamma, et al.

Our web application is a real-time conferencing system. Our
application maintains a pool of Participant objects that represent
any of the thousands of users who interact with our site.

The most common interaction with a Participants object is inspection:
one of the users looks at the complete list of participants, with their
names and preferences. If the user decides to initiate a conversation
with another participant, or send that participant a message, the
system creates a real Participant on demand.

VirtualParticipant

name
interests[]

getInterests()
getName()
getEmailAddress()
getDescription()
getAffiliation()

Participant

name
interests[]
email_address
description
affiliation

getInterests()
getName()
getEmailAddress()
getDescription()
getAffiliation()

recipient

Client

Proxy

request()

request()

RealSubject

request()

private static real_object;

new() {
 // returns new Proxy()
}

request() {
 if (real_object == null) {
 real_object = new RealSubject();
 }
 return real_object.request();
}

Many Participants

Remote Objects

Our online ordering system needs to submit orders to a remote object
that is running on a server somewhere across the network.

We are using CORBA to access this object remotely and invoke its
methods.

<<Script>>
PlaceOrder

submitOrder()
sendConfirmation()

OrderSystemStub

placeOrder(Order)

OrderSystem

placeOrder(Order)

OrderSystemImpl

placeOrder(Order)

placeOrder(the_order)

Order

String customer_name
Address address
LineItems[] line_items
CreditCard credit_card

remote system

<<Script>>
EditNewsItem

Our website presents news articles to our readers. We have
several users who work on each article, and these people need
to have varying levels of access to the article.

We didn’t want to muddle up the NewsItem class by dumping a
lot of security features in it, so we’ve created a wrapper class to
control access. the wrapper class examines the current user’s
credentials before permitting or denying a specific action.

NewsItem

delete()
updateContent()
setAuthorName()
setExpirationDate()

ProtectedItem

delete()
updateContent()
setAuthorName()
setExpirationDate()

target

UserCredentials

boolean is_editor
boolean is_author

Access Levels

consults

Builder

Assignment: Find three collaborations that implement Builder.

Problem: Suppose that the same information needs to be rendered
in multiple ways. Imagine a data graph that can be rendered
in GIF, JPG, or PNG. How can we separate the construction
of the image from the way we represent it internally?

Solution: The builder pattern suggests that we define a common interface
for classes that generate images. Then, we create implementations
for each of the graphics formats we want to support. A client program
selects a different implementation depending on what image format
we want to use

Our system needs a generic method to send notification messages
regardless of the delivery method (email, fax, or ICQ).

chartData[][]
charType
. . .

generateChart()

GraphGenerator

drawPixel(x, y)
drawLine(x1, y1, x2, y2)
drawText(x1, y1, font, text)
. . .

Renderer

drawPixel(x, y)
drawLine(x1, y1, x2, y2)
drawText(x1, y1, font, text)
. . .

PNGRenderer

drawPixel(x, y)
drawLine(x1, y1, x2, y2)
drawText(x1, y1, font, text)
. . .

JPEGRenderer

Depending on a user’s needs, our web site management suite
can use one of three indexing algorithms:

Quick and Dirty:

Small Database:

Quick Searches:

Generates indexes quickly, but the performance
of searches is poor, especially for large sites.

Generates the smallest index, but takes a long
time to generate. Searches perform acceptably.

Generates a large index, takes a long time to
generate. Searches perform very quickly.

indexSite(url)
. . .

Indexer

indexSite(url)
. . .

SmallDBIndexer

indexSite(url)
. . .

QuickDirtyIndexer

indexSite(url)
. . .

QuickSearchIndexer

setRecipient(string)
setMessage(string)
send()

NotifierEmailNotifier

setRecipient(string)
setMessage(string)
send()

FaxNotifier

setRecipient(string)
setMessage(string)
send()

ICQNotifier

setRecipient(string)
setMessage(string)
send()

Our news delivery system stores news stories in an SQL database.
Because it’s stored in an easily accessible format, we can render the
news stories in a variety of ways.

Our system will use a plug-in architecture to generate news stories
in formats such as HTML, plain text, and PDF.

setArticleID(int)
writeDocument(filehandle)
writeDocument(filename)

Publisher

Automated Notifications

Site Management

All the News that Fits

setArticleID(int)
writeDocument(filehandle)
writeDocument(filename)

PDFPublisher

setArticleID(int)
writeDocument(filehandle)
writeDocument(filename)

HTMLPublisher

setArticleID(int)
writeDocument(filehandle)
writeDocument(filename)

TextPublisher

Source: Design Patterns, Elements of Reusable Object-Oriented Software. Gamma, et al.

Singleton

Assignment: Find three collaborations that implement Singleton

Problem: We want to make sure that a given class only has one instance,
but we don’t want to use a global variable, since it’s kind of messy.

Solution:

We’re using Apache and mod_perl (perl.apache.org) in a public
library system. We’re also using the Perl DBI to connect to a
database of books. Since scripts written for mod_perl remain in
memory between invocations, it makes sense to use a persistent
database connection, rather than making a new connection each
time the script is run.

From the Apache::DBI man page:

public class Singleton {

 static private Singleton the_object;

 // The real constructor.
 private Singleton() {
 }

 // Constructor from the Singleton pattern.
 static public Singleton instance() {
 if (the_object == null) {
 the_object = new Singleton();
 }
 return the_object;
 }

}

Making the Connection

Remembering YouSharing Things

The Singleton pattern gives you an alternate constructor that
always returns the same instance of the class.

Applications that use Singleton should not call the new method,
but should instead call the instance() method. The instance()
method only calls the new() method once, and stores the new
instance into the_object. Next time the application invokes
instance(), it gets the same object again.

instance()
...

Singleton

connect()
...

Apache::DBI

...every connect request will be forwarded to the Apache::DBI
module. This looks if a database handle from a previous connect
request is already stored and if this handle is still valid... If these
two conditions are fulfilled it just returns the database handle... If
there is no appropriate database handle or if the ping method fails,
a new connection is established and the handle is stored for later
re-use.

openDatabase()
getBooks()
displayBooks()

<<Script>>
ListBooks.pl

In a CGI application, scripts are terminated when they have finished
running. As a result, all of the information stored in the script’s variables
is forgotten.

We’re using a session object that uses HTTP cookies to store variables
on the user’s browser. That way, each time a script starts up, it can get
an instance of that session object, and we have access to all the variables
left there by the last script that the user ran!

In this way, we can share state information between scripts.

getSession()
getValue(key)
setValue(key, value)

Session
<<Script>>
AnyScript

Our web application needs to share certain global values between different
users. The application is a real-time conferencing system, and users need
to get a list of the other users who are logged in, the currently active topics,
and other information.

We’re using a GlobalData object to encapsulate the global application data.

getUsers()
getTopics()
initiateTopic(title)

GlobalData
<<Script>>
AnyScript

Source: Design Patterns, Elements of Reusable Object-Oriented Software. Gamma, et al.

Assignment: find three concepts, then work together to find relationships and
draw the conceptual model.

Visit the home page.

Choose one or more topics

Choose a headline.

User Action System Response

Display a list of topics and topic
descriptions.

Display all the headlines with rating
score, grouped by each topic.

Display the article that corresponds
to the headline.

Use Case: Read News Articles

Our user visits our home page, and is presented with a list of current
topics (with descriptions). He should select one or more topics, and
then the system displays all the headlines for the selected topics. In
addition, each article is rated by other users (a score of -1 or 1),
and the total score is displayed next to each headline. The
user can read the articles by choosing a headline.

Summary:

Assignment: find three concepts, then work together to find relationships and
draw the conceptual model.

Initiates creation of a new
profile.

Enter name and email address.

Choose musical genre.

Supply shipping address.

Confirm that the information
is correct.

User Action System Response

Starts the new profile process, which
begins by collecting the user’s name
and email address.

Prompt user to choose one or more
preferred musical genres.

Prompt user for default shipping address.

Prompt user to confirm information
before creating profile.

Create the new profile and redirect
user to the home page.

Use Case: Create User Profile

A user decides to create a personal profile for their future visits
to our web site. As they do this, they select various preferences,
and finally create their profile.

Summary:

Assignment: find four concepts, then work together to find relationships and
draw the conceptual model.

Visit the cookie order form.

Select a quantity for each
cookie desired.

Supply requested information.

Confirm the information.

User Action System Response
Display a form of all cookies available,
their price, and a quantity field next to
each cookie.

Prompt the user for name, shipping
address and credit card information.

Prompt the user to confirm the
information.

Process the order.

Use Case: Order Cookies

A user visits the cookie order form, selects some cookies for
ordering. Next, the user supplies shipping and billing information
to complete the order.

Summary:

1.

3.

5.

2.

4.

6.

2.

4.

6.

8.

10.

1.

3.

5.

7.

9.

1.

3.

5.

7.

2.

4.

6.

8.

name
description

Topic

headline
byline
content
creation_date
expiration_date

Article

name
email_address

User

street_address
city
state
zip_code
country

ShippingAddress

name
description

Genre

name
street_address
city
state
zip_code
country

Order

quantity

OrderLineItem

card_type
card_number
expiration_date

CreditCard
name
description
price

Cookie

score
comments

Rating

Exercises

Module One.

Exercise: Pass out the cards for module one. Ask the person with the class diagram to find the source code that implements
their diagram. When they are done, they should perform the exercise as a group. If anyone is uncomfortable working in a group,
I will give them a sheet with the classes and the diagram, and they can work on this on their own. They can just sit in their seat
during the exercise, and I’ll discreetly bring the sheet over to them.

Let the students know that there are only three different diagrams, and multiple copies, so it should be easier to find their
matches.

Module Two.

Exercise: Pass out the cards for module two. Ask the person with the pattern to find class diagrams with implementations
of the pattern. Note that the pattern can be used for problems other than the one stated on the pattern card, so think about
the pattern in isolation from the problem, and consider how it might apply elsewhere.

When they are done, they should implement the class diagram in the language of their choice. No need to
develop a full implementation - just write stub functions that print some message out and write a simple program to test
out each class.

Module Three.

Exercise: Pass out the cards for module three. Ask the person with the use case to find concepts that belong in their conceptual
model.

When they have collected all the matching concepts, draw the conceptual model. Then, implement stub implementations for the
classes in the conceptual model, using their language of choice.

Module Four.

Exercise: With the use case from the previous exercise, develop a conceptual model that incorporates user interface elements.

Module Five.

Exercise: Develop a prototype for the use case from the previous module. Use the conceptual model you created in the previous
step.

Use on-line pattern repositories or one of the books I have with me to find patterns that help you assign responsibility.

Module Six.

Choice One: Implement the remaining steps of the Select a Product use case.

Choice Two: Implement one of the use cases from the exercises.

Some (hopefully) Helpful Links

Brad Appleton’s Object Orientation Links:
 http://www.enteract.com/~bradapp/links/oo-links.html

Open Directory Project: Patterns and Anti-Patterns:
 http://dmoz.org/Computers/Programming/Patterns_and_Anti-Patterns/

Design Patterns (Gamma, et al) converted to UML:
 http://www.tcm.hut.fi/~pnr/GoF-models/html/

Patterns Home Page:
 http://hillside.net/patterns/patterns.html

HTML Pattern Language:
 http://www.anamorph.com/docs/patterns/default.html

Patterns and Software: Essential Concepts and Terminology:
 http://www.enteract.com/~bradapp/docs/patterns-intro.html

Design Patterns in Java:
 http://www.ece.utexas.edu/~natrajan/Patterns.html

Lecture Notes from a Design class at SDSU:
 http://www.eli.sdsu.edu/courses/spring98/cs635/notes/index.html

Some (hopefully) Helpful Links

Brad Appleton’s Object Orientation Links:
 http://www.enteract.com/~bradapp/links/oo-links.html

Open Directory Project: Patterns and Anti-Patterns:
 http://dmoz.org/Computers/Programming/Patterns_and_Anti-Patterns/

Design Patterns (Gamma, et al) converted to UML:
 http://www.tcm.hut.fi/~pnr/GoF-models/html/

Patterns Home Page:
 http://hillside.net/patterns/patterns.html

HTML Pattern Language:
 http://www.anamorph.com/docs/patterns/default.html

Patterns and Software: Essential Concepts and Terminology:
 http://www.enteract.com/~bradapp/docs/patterns-intro.html

Design Patterns in Java:
 http://www.ece.utexas.edu/~natrajan/Patterns.html

Lecture Notes from a Design class at SDSU:
 http://www.eli.sdsu.edu/courses/spring98/cs635/notes/index.html

